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Computer simulation of polyethylene crystals 
Part 3 The core structure of dislocations 
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A simulation by computer of dislocations in orthorhombic polyethylene has been under- 
taken using the DEVILS suite of programs described in Part 1 [2]. The perfect dis- 
locations with the shortest Burgers vector b have been considered, namely the screw 
with b = [00 1] and the edges with b = [0 1 0], [100]  and (1 10). The (1 10) edge 
dissociates into Shockley partials with a very wide spacing and could not be modelled 
successfully with the crystal sizes employed. The other dislocations have narrow cores, 
and the [0 0 1] screw is symmetrical except for small molecular rotations along the 
(1 00) plane. Under applied shear strain, the screw glides on (1 00), (0 1 0) and {1 1 0}, 
with the [0 0 1] (1 0 0) system having the lowest Peierls stress. The [1 0 0] and [01 0] 
edge dislocations are not glissile on their slip planes, however. Instead of gliding on 
(01 0), the [1 00] edge dissociates under stress in a non-planar way on the {110} planes. 
It is predicted that transverse slip in polyethylene occurs by combinations of partial 
dislocation glide on the two {1 1 0} planes. 

1. Introduction 
The variety of slip, twinning and martensitic- 
transformation modes by which polymer crystals 
can deform by shear was discussed in Part 2 [1 ]. 
As explained there, a full understanding of the 
mechanical properties of crystalline polymers 
requires detailed knowledge of the molecular 
distortions and displacements around the dis- 
locations and interfaces associated with these 
modes. This information demands a theoretical 
approach, the most straight-forward at the 
moment being crystal simulation by computer. 
The DEVILS suite of programs described in Part 1 
[2], was used in Part 2 to simulate stacking-fault 
and twin-boundary interfaces in model poly- 
ethylene crystals, and it has been applied for the 
present work to the simulation of dislocation-core 
structures. 

DEVILS employs the crucial assumption that 
the individual molecular chains are infinitely- 
long and rigid, so that intramolecular distortions 
and surface effects, such as molecular folds, are 
neglected. With this assumption, the computation 
of the required lattice sums becomes tractable, 
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and for dislocations it means that only those 
which are infinite in length and lie along the 
[0 0 1 ] chain-axis direction can be modelled. This 
is not as restrictive and it might at first appear, 
for dislocations which result in broken covalent 
bonds are unlikely to occur, and those which 
leave bonds intact but distorted appear from 
indirect evidence to play an insignificant role 
in deformation [1]. The dislocations considered 
here, therefore, lie along [001]  and are respon- 
sible for slip on planes of the [001 ] zone. Their 
Burgers vectors are the four shortest, distinct 
lattice vectors of the orthorhombic form of poly- 
ethylene, namely [001],  [010],  [100]  and 
(110);  the first of these defines the screw dis- 
location believed to be responsible for "chain- 
axis slip", whereas the other three belong to the 
edge dislocations that are anticipated to be 
dominant in "transverse slip". (The monoclinic 
phase was not considered in this part of the 
study.) 

The molecular configuration within the core 
region of these dislocations has been simulated 
using the methods outlined in Part 1. Dislocations 
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have been modelled in crystals either free of 
external stress or strained homogeneously as if 
under an externally applied shear stress. The 
stress in the latter state was chosen to act on the 
slip plane in the direction of the Burgers vector, 
and therefore induces the dislocation to move by 
glide. 

2. Methods 
Crystallites of orthorhombic polyethylene were set 
up in the form of rectangular parallelepipeds using 
the lattice-handling routines of DEVILS [2]. The 
block edges were chosen to be parallel to [100],  
[0 10] and [00 1], referred to herex,y ,z ,  respec- 
tively. The molecular chains were infinitely long 
in the z direction, and blocks containing up to 
160 chains in the inner, relaxable region were 
generated. The outer mantle of fixed molecules 
surrounding the x and y faces was of sufficient 
thickness to ensure that all molecules of the inner 
region had a full set of neighbours consistent with 
the range of the interatomic potentials used. The 
main dislocations investigated are shown schemat- 
ically in Fig. 1. A dislocation was introduced into 
a perfect crystallite by imposing the displacements 
of linear elasticity theory on the molecules of the 
inner and outer regions. The dislocation displace- 
ments given by anisotropic elasticity [3] with the 
elastic constants appropriate to the interatomic 
potential [2] were used for the screw (Fig. la), 
whereas the approximation of isotropic elasticity 
with an effective Poisson's ratio calculated from 
the anisotropic energy factors was adopted for the 
edges (Fig. lb and c). The effects of imposed 
anisotropy within the outer region on the relaxed 
displacements in the core were found to be in- 
significant for the block sizes used. 

The molecules were allowed to interact via 
the Williams set I potentials with ranges extended 

(a) (b) (c) 

Figure 1 Geometric representation of the dislocations 
studied showing their relationship to the lattice unit 
cell, which has parameters a, b, e. The Burgers vectors 
are (a) [001], (b) [010] and (c) [100]. 

as discussed in Part 1. Most relaxation runs em- 
ployed fewer than 160 inner-region chains in order 
to reduce computer time, but in all cases the final 
runs used crystallites of this size in order to ensure 
that the rigid boundaries did not influence the 
relaxed core structure. In particular, small varia- 
tions in the dislocation origin selected for the 
initial elastic displacements had an insignificant 
influence on the relaxed displacements for the 
block sizes chosen. 

To induce the model dislocations to move by 
slip, a simple, homogeneous, shear strain was 
applied to the molecules of the inner and outer 
regions of the fully-relaxed crystallite, which was 
then relaxed again. The [0 0 1] screw (Fig. la) can, 
in principle, slip on any plane of the [0 0 1 ] zone, 
but only the low-index, most widely-spaced.planes 
were considered, i.e. (1 00), ( 0 l  0) and (1 1 0). 
The simple shears applied were therefore e31, e32 
and e32', respectively, where subscript 2' refers 
to the (1 1 0) plane. (In the notation adopted here, 
e31, for example, is a shear in the z direction on a 
plane normal to the x-axis.) The shears applied for 
[ 0 1 0 ] ( 1 0 0 )  and [ 1 0 0 ] ( 0 1 0 ) s l i p  of the two 
edge dislocations of Fig. lb and c were e21 and 
e12 , respectively. If  linear elasticity is assumed to 
describe the response of a crystallite to stress, the 
shear stress resulting in the shear strain e is/le,  
where /l is the appropriate shear modulus as 
computed in Part 1, i.e. Cs5, C44, C66 and C66 for 
the slip systems [001 ] (100 ) ,  [ 0 0 1 ] ( 0 1 0 ) ,  
[0 1 0](1 00) and [1 00] (0  1 0), respectively, and 
a combination of C44 and Css for [001](1 10) 
slip. However, it will be seen later that the strains 
required for slip are large, so that/le is only a poor 
approximation to the stress. In the following, 
therefore, strain rather than stress values are 
quoted. 

3. Results for unstressed crystals 
3.1. Edge dislocations 
The relaxed molecular configuration in crystals 
containing the edge dislocations with Burgers 
vector b (not to be confused with lattice para- 
meter b) equal to [0 1 0] and [ 1 0 0] is shown by 
the computer-generated symbols in Fig. 2a and b. 
The positions of  the molecules and their setting 
angles are denoted by the vector arrows, as defined 
in Part 1. No displacements have occurred in the 
[0 0 1 ] z-axis direction normal to the plane of the 
figures. It can be seen that the two extra half- 
planes of the [0 1 0] edge are mainly accommodated 
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Figure 2 Relaxed molecular positions and orientations for the edge dislocations with Burgers vector b equal to (a) 
[01 01 and (b) [100]. 

in a narrow region of the (1 0 0) slip plane. Only a 
few molecules undergo significant rotations, the 
largest being 29 ~ and taking place at the bottom 
of one of the half-planes labelled M in Fig. 2a. 
The two half-planes of the [ 1 0 0] edge in Fig. 2b 
are likewise accommodated without widespread 
disruption of coordination across most of the slip 
plane. This is only achieved, however, by both 
half-planes consisting effectively of molecules of 
setting angle + 43 ~ the half-plane between them 
with chains of setting angle - 4 3  ~ forming a con- 
tinuous plane with chains of angle + 43 ~ below 
the slip plane. In the transition region on this 
plane, i.e. within the dislocation core, consider- 
able chain rotations occur, the largest being 53 ~ 
for the molecules labelled M and N in Fig. 2b. 

A useful way of representing the molecular 
displacements in cores of this type is to plot the 
relative displacements in the direction of b between 
molecules on opposite sides of the slip plane as 
a function of position along the slip plane: i.e. 
to plot Auy against y for the [0 10] edge of Fig. 2a 
and Au= against x for the [1 00]  edge of Fig. 2b. 
These functions are shown by the Au (relaxed) 
curves in Fig. 3a and b, respectively: each data 
point was obtained from the pairs of molecules in 
the planes labelled PP' arid QQ' in Fig. 2 and 
whose mean positions are marked by small circles 
along the slip plane. (The displacements used to 
calculate these plots were those of the chain- 
centre axes, and chain rotation effects are, there- 
fore, neglected.) The curves rise from approxi- 
mately zero to a value close to I b I - equal to the 

lattice parameters b and a for the two dislocations, 
respectively - as the core is traversed along the 
slip plane: the faster the rise the narrower the 
core. An even more effective way of indicating 
graphically the structure of the core is to plot the 
derivatives of the displacement differences [4], i.e. 

p~(x) = (Au~), p~(x) = ~ ( a u ~ ) ,  

py(.y) = -g2/.(2~uy), etc. 
o)/ 
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Figure 3 The displacement differences Au and Burgers 
vector distribution function p along the slip plane of  the 
edge dislocations with b equal to (a) [0 1 0] and (b) 
[ 1 0 0 ] .  
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These functions give a continuous representation 
of the distribution of Burgers vector along the slip 
plane, for, taking the [1 0 0] edge as an example, 

['p=(x)Ix = Ibl, ~_~ p=(x)dx = o. 

Only in the case of dissociation within the core 
into partial dislocations with screw component 
will the density functions P z ( X )  and P z ( Y )  be non- 
zero; that did not occur in the present study as the 
displacements uz were zero. 

The derivative at any one datum point on the 
Au plots of Fig. 3 was computed from the gradient 
there of the quadratic fitted through the point 
and the adjacent point on each side. The resulting 
Burgers vector distributions are shown by the 
curves labelled py (relaxed) and P x  (relaxed) in 
Fig. 3a and b, respectively. The y and x positions 
of the peaks on these two curves are denoted by 
the D symbols on the molecule plots of Fig. 2. 

For purposes of comparison, the initial, un- 
relaxed distribution of Burgers vector, p (elastic), 
is also shown in the two figures. It can be seen 
that both p (relaxed) curves exhibit a single, well- 
defined peak; this is to be expected in the absence 
of stable stacking faults [1] (and therefore dis- 
location dissociation) on the (100) and (010) 
planes of orthorhombic polyethylene. A striking 
feature of the [0 1 0] edge, however, is that mole- 
cular relaxation actually reduces the width of the 
core, thereby restricting the zone of disregistry 
over which Au changes from zero to Ibl to a 
narrow region of slip plane. There is a similar, but 
less marked, effect for the [1 0 0] edge. 

The third edge dislocation referred to in Sec- 
tion 1 has a Burgers vector b = ( 110 ). Despite ttle 
fact that this vector is much longer than the 
others, thereby implying a large lattice energy 
associated with the dislocation, the structure of 
the {1 1 0} planes is such that the dislocation can 
dissociate into two Shockley partials bounding a 
ribbon of stacking fault. Several stable, trans- 
lational faults exist on the {1 1 0} planes [1], and 
the dissociation most favoured by Frank's rule is 

<1 1 0) -+ <0.47 0.47 O) + (0.53 0.53 0), (1) 

resulting in a reduction in Ibl 2 of 50%. The 
stacking-fault energy of the enclosed fault is 
12.5 mJ m -2 according to the simulations reported 
in [1 ], and the corresponding partial spacing calcu- 
lated from elasticity theory using the model elastic 
constants given in [2] is 33 rim. This width is much 

too large to permit the dissociated dislocation to 
be simulated in a computer model, although a 
perfect (1 1 0) dislocation was introduced in one 
experiment to ensure that dissociation would 
actually occur. It did, the partials which formed 
during relaxation moving apart until constrained 
by the boundary between the inner and outer 
(rigid) regions and bounding a stacking fault as 
defined in Reaction 1. 

3.2. Screw dislocation 
The positions and setting-angle vectors for the 
molecules of the inner region used for the c-axis 
screw dislocation are shown in Fig. 4. (This, of 
course, is also the perfect crystallite used for the 
edge simulations.) During relaxation to minimize 
the energy, the molecular movements in the x 
and y directions were small, being less than 0.1 A 
in all cases. The rotations were also small, the 
largest being those of chains labelled A, B, C, D, 
which rotated anti-clockwise by 1 ~ 4 ~ 2.5 ~ and 
0.5 ~ respectively, and E, F. G, which rotated 
clockwise by 2 ~ , 4.5 ~ and 2 ~ , respectively; all 
other rotations were less than 0.3 ~ . The molecular 
rotations associated with the screw are therefore 
largely accommodated on the (1 00) plane. The 
distribution of the z-axis displacements uz in t h e  

core have been monitored for the low-index planes 
through the core centre, i.e. (0 1 0), (00 1)and  
(11 0). The displacement differences A u  z between 
pairs of molecules in these planes (labelled PP', 
QQ' and RR' in Fig. 4) have therefore been deter- 
mined, the mean position of each pair considered 
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F i g u r e 4  The inner, relaxable region of the crystallite 
employed for the simulation of the [ 0 0 1 ]  screw dis- 
location. 
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Figure 5 The displacement differences Au and Burgers 
vector distribution function P along (a) the (01 O) planes 
PP', (b) the (100) planes QQ' and (c) the (11 O) planes 
RR' through the core of the [ 001 ] screw dislocation. 

being shown as a small circle in the figure. The 
distribution of  Burgers vector on each plane was 
then calculated from the relations 

a 
o=(x) = _ . ~ ( ~ ) '  p~(v) = ~ (~ . . ) ,  

a 
o,(x') = a T ( A . ~ ) ,  

where x '  is the direction lying along RR', as indi- 
cated in Fig. 4. The resulting Au and O plots for 
the relaxed and unrelaxed, i.e. elastic, configur- 
ations are given in Fig. 5a to c. 

The O plots show a single peak located at the 
point marked S in Fig. 4, indicating that the screw 
dislocation does not dissociate in any of  the three 
planes. In fact, the change in core width, as 
measured, say, by the "width at half-peak height" 
of  the P curves, is almost unchanged by relaxation 
in each case. The widest core occurs on the (0 1 0) 
plane, but this is mainly a manifestation of  the 
interplanar spacing, as seen by  the elastic solution, 
and is not significant. 

4 .  R e s u l t s  f o r  s t r e s s e d  c r y s t a l s  

4 .1 .  S c r e w  d i s l o c a t i o n  
The state o f  the dislocation core was monitored 
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Figure 6 The Burgers vector distribution function along 
the low-index slip planes of the [0 0 1] screw dislocation 
for applied shear strains e less than the critical value. 

after each increment of  applied strain both by 
direct inspection o f  plots of  the molecular con- 
figuration and by computation of  the Au and P 
values along the slip plane. The critical strain for 
slip, which is the Peierls stress divided by /x ,  is 
taken here to be the value o f  applied strain for 
which the peak of  the Burgers vector distribution 
is displaced by one lattice repeat distance along 
the slip plane. For larger strains than this, the 
dislocation moves by several repeat distances 
until the restraining influence o f  the (unrelaxed) 
molecules in the outer region is encountered. The 
results for the [0 0 1 ] screw dislocation are easiest 
to describe and are considered first. 

Plots of  the Burgers vector distribution Oz 
along the slip plane for various values o f  applied 
shear strain e less than the critical value are shown 
in Fig. 6. The strains applied were e3~ , e31 and e32' 
for the (010) ,  ( 1 0 0 )  and (1 10) slip planes, 
respectively, where the axes are defined in Figs. la  
and 4. The dislocation simulated is a right-handed 
screw, and it therefore moves in the + x direction 
under positive e3~, the -y direction under positive 
e31, and the + x '  direction under positive e32'. The 
critical strains for movement were found to be 
0.073, 0.092 and 0.105 for the (0 t 0), [1 00)  and 
(1 10) slip planes, respectively. The molecular 



chain rotations at all strains up to and including 
those for which the dislocation moved were small, 
never exceeding 5 ~ It can be seen from the P 
curves that the shift and shape changes in the core 
distribution are small until the strain is at least 
half the critical value. It is at first surprising that 
the critical strain for [001](1  00) slip is not the 
lowest, for in the unstressed crystal the core of the 
screw dislocation seems to be accommodated by 
small chain rotations on either side of this plane 
(Section 3.2) and the (100)  planes have the 
widest interplanar spacing in the structure. It is 
apparent from Fig. 6, however, that whereas the p 
curves for the (0 10) and (110)  planes retain a 
fairly symmetrical shape until slip occurs, the 
profile on (100)  becomes very broad in nature. 
For this reason, the precise value of the critical 
strain for the latter case is less certain than for the 
other systems. If the critical strain is defined not 
as above, but from the displacements of either the 
point 2xu z = i bl/2 on the 2xu z plot or the centre 
of gravity of the Pz plot, its value is reduced to less 
than 0.08. Bearing in mind the smaller value of the 
transverse shear modulus for the (100)  plane, i.e. 
Css < C44 [2], it is probably safe to conclude that 
the [001](1  00) system has the smallest Peierls 
stress for chain-axis slip. 

4.2. Edge dislocations 
Under a positive applied strain eel, the [0 10] 
edge dislocation of Fig. 2a experiences a force to 
the left, and under positive strain e12, the [100]  
edge of Fig. 2b tends to move to the right. The 
distribution of Burgers vector in the (100)  and 
(0 10) slip planes for increasing values of these 
strains is given in Fig. 7a and b, respectively. It 
can be seen that rather than widen and shift as 
expected, the cores actually become narrower with 
no tendency for slip to occur. Even by applying 
strains as large as 0.16, the dislocated crystals 
could not be induced to slip on the [ 0 1 0 ] ( 1 0 0 )  
and [100] (0  10) systems. 

The explanation for this behaviour is best 
sought in the computer-generated plots of the 
molecular positions. Fig. 8a shows the (001)  pro- 
jection of the molecules for the edge dislocation 
with b = [100],  as first given in Fig. 2b. In this 
case, however, the molecules are depicted not 
only by vector arrows denoting the plane of the 
carbon-carbon zig-zag, but also by crosses and 
asterisks: this has been done to distinguish between 
chains originally at the orthorhombic unit cell 
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Figure 7 The Burgers vector distribution function along 
(a) the (1 0 0) slip plane for the [0 1 0] edge, and (b) the 
(0 1 0) slip plane for the [1 00] edge. The values of e of 
the applied strains e21 in (a) and e12 in (b) are indicated. 

corners (crosses) and those at the unit cell centres 
(asterisks). It is now easier to visualize the [100]  
edge dislocation, not only as two extra (100)  half- 
planes, but also as two extra {110} half-planes. 
The latter planes have indices (1 10) and (1 i 0 ) ,  
and are labelled A and B in Fig. 8a; the centre of 
the dislocation core is defined by the letter D. 
Fig. 8b shows the same crystallite under an applied 
strain e12 of  0.12. By viewing the figure along the 
[010] ,  [1 10] and [1 ]-0] directions, it may be 
seen that slip has occurred, but not on the (010)  
plane. The effective extra {1 10} half-planes have 
moved under the strain to the new positions 
labelled A and B, and the perfect dislocation with 
slip plane (010)  has dissociated into two partial 
dislocations labelled Dl and Dz. The sfip planes of 
the partials are (1 ]-0) and (1 1 0), respectively. 
The partial D 1 is quite distinct, and by its glissile 
motion along (1 TO) a stacking fault (denoted by 
a dashed line) has been produced, as clearly seen 
by the relative positions of the crosses and 
asterisks. 

It was reported in Part 2 [ 1 ] that for the model 
crystallite used in this work, several stable stack- 
ing faults can exist on the {1 1 0} planes. One has 
an energy of 12.5mJm -2 and translation vectors 
of 0.47 [170] on (110) and 0.53 [110] on 
(1 ]-0); the others include an additional translation 
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of �89 [0 0 1 ], and are not involved here. (The trans- 
lations given refer to shifts of the material above 
the fault plane relative to the material below.) 
From its appearance in Fig. 8b, the fault between 
D and D1, has a translation vector close to �89 [ 1 1 0], 
although it is not sufficiently extended to be un- 
distorted by the dislocation core.* However, if 
it is taken to be 0.53 [1 1 0], i.e. D1 has a Burgers 
vector of 0.53 [1 1 0], the reaction involved in the 
dissociation has the form 

[1 001 ~ 0.53 [1 1 0] 4- 0.47 [1 1-0] 

+ 0.06 [0T0] .  

Glide of D1 appears from Fig. 8b to be restrained 
by the fixed molecules in the outer region surround- 
ing the crystallite, whereas D2 must have stopped 

(b) 

Figure 8 (a) Molecular configurat ion o f  the  edge dislo- 
cat ion with b = [ 1 0 0 ] .  The extra { 1 1 0 }  half-planes are 
denoted by A and B. (b) The dislocation in (a) after 
application of  a shear strain e12= 0.12. (c) The  dislo- 
cation in (a) after application o f  the biaxiat strain el~ = 
--e2~ = - - 0 . 1 2 .  

for other reasons. The resolved shear strain on the 
(1 1 0) plane is actually less than that on (1 1-0), 
for the strain applied is a simple shear rather than 
a tensor strain, but this is unlikely to be the cause 
of the asymmetry since it persists even for applied 
strains el2 of up to 0.15. One possibility is that 
the Shockley partial with b = 0.47 [1 T 0] has a 
relatively high Peierls stress: another is that the 
asymmetry about the x-axis which is inherent in 
the original edge dislocation in some way inhibits 
the extension of the fault on (1 1 0). The latter 
interpretation is supported by the values of the 
displacement differences between the molecules 
on the neighbouring {1 10} planes which pass 
through the core centre D: even in the unstressed 
crystal, the core displacements are more widely 
spread in the upward-pointing [1 1 0] and [T 1 0] 
directions than the downward-pointing [1 TO] 
and [1 10] directions. Furthermore, when a 
negative strain e12 is applied, the dissociation 
again becomes asymmetrical, one Shocldey partial 
gliding upwards on (1 1 0) creating a stacking fault, 
the other on (1 1-0) remaining close to the stair- 

(2) rod at D. The Burgers vector reaction in this 
second case is 

[ I 0 0 ]  ~ 0.53 [1i-0] + 0.47 [110] 

+ 0.06 [0 1 0]. (3) 

*It is of  interest to note  that  the  fault  produced by D z is not  a pure  translation fault,  for some of  the molecules 
adjacent to the fault (denoted by crosses) have been rotated.  A number  o f  metastable faults o f  this type  probably exist 
with similar energies, and the  one in Fig. 8b may revert to the pure translation form i fD  1 were allowed to move away. 
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The core structure of the [1 00] edge disloca- 
tion can therefore be imagined as having a "vee" 
form, the principal displacement differences being 
accommodated on the two arms of the vee which 
point upwards (for a positive edge) along the 
(1 10) and (1]-0) planes. These displacements 
form the embryos of two Shockley partials having 
Burgers vectors 0.53 [1]-0] on (1 1 0) and 0.53 
[110] on (1]0) .  The dislocation can be induced 
to dissociate in a symmetrical manner by apply- 
ing equal shears symmetrically on the two {1 1 0 } 
planes of the vee. This is demonstrated in Fig. 8c, 
which is the molecular configuration resulting 
from the application of a biaxial strain ell = - -  
e2z = --0.12 to the crystallite of Fig. 8a. In this 
situation, the two Shockley partials have moved 
approximately equal distances from D along the 
(1 1 0) and (1 TO) planes, and the Burgers vectors 
involved in the dissociation are 

[100]  ~ 0.53 [ 1 T 0 I +  0.53 [1 101 

+ 0.06 [~ 0 0]. (4) 

From this result, it would appear that under the 
application of a simple shear e12 (positive or 
negative), one Shockley partial moves away from 
D and extends the fault, and the other glides back 
into D to combine with the 0.06 [i-00] stair-rod 
partial and then react as described in either Reac- 
tion 2 or 3: the second Shockley thus formed is 
unable for some reason to move freely away from 
the vicinity of D. All the reactions described in 
Reactions 2, 3 and 4 are energetically favourable 
according to Frank's rule. 

Finally, the molecular structure of the edge 
dislocation with b = [0 1 0], as shown in Fig. 2a, 
has been examined to see if there is any tendency 
for this core also to adopt a non-planar form. 
None was found. Even under large shear strains 
e21 , the core retains an almost unaltered form, as 
is clear from the curves of Fig. 7a. The effective 
extra {1 1 0} half-planes remain those which can 
be discerned in Fig. 2a, and no partials with 
(1 1 0) components are formed. The same lack 
of dissociation was found when strains e12 were 
applied. It is not surprising that this dislocation 
does not dissociate, for the decomposition of the 
vector [0 1 0] into components of approximately 
�89 10} would be energetically unfavourable 
according to Frank's rule for dislocation reactions. 
Or the other hand, it was anticipated that the 
[0 1 0] edge would slip on the (1 0 0) plane since 

the interplanar spacing for this system is the 
widest in the structure. However, inspection of the 
stacking-fault-energy surfaces presented in Part 2 
[1] shows that there exists' on the (1 0 0) plane a 
very large barrier to the relative displacement of 
molecules in the [0 1 0] direction. This is believed 
to be the reason for the narrowness of the dis- 
location core and the strong resistance to slip, 
which would require molecules to move past each 
other in the [0 1 0] direction. 

5. Discussion 
To test for any marked dependency of the dis- 
location cores on the precise details of the inter- 
atomic potentials employed, unstressed crystals 
containing the three dislocations of Fig. 1 were 
relaxed using the set VII potentials defined in 
Part 1. The resulting forms were not significantly 
different from those reported in Section 3 on the 
basis of the set I potentials. A similar result was 
observed in Part 2 for stacking faults, and it is 
concluded, therefore, that the molecular configur- 
ations obtained here are meaningful and represen- 
tative of the polyethylene structure. 

The strains required to make the dislocations 
move are large in comparison with values exper- 
ienced in practice. This is not a block-size effect, 
for tests were made using different crystallite 
sizes to ensure that the presence of the rigid 
boundary regions did not unduly influence the 
results obtained. Nor is this observation peculiar 
to polymers, for in a number of simulations of dis- 
location glide in model metal crystals, critical 
strains of up to several per cent have been en- 
countered [5]. The answer probably lies in the 
fact that the computer programs simulate crystals 
at OK, and thermal activation through lattice 
vibrations would almost certainly reduce the 
Peierls stress values by orders of magnitude. It is 
considered that computer modelling gives values 
which are probably reasonable estimates relative 
to each other, and, more importantly, shows 
molecular effects such as dislocation core struc- 
ture and dissociation that reliably reflect the 
behaviour of real systems. 

The results of Section 3.2 show that the [0 0 1 ] 
screw dislocation has a narrow core without any 
tendency to spread on the planes of the [001]  
zone. This confirms the predictions of the study 
of the stacking-fault-energy surfaces in Part 2. 
Under the application of shear strains, the dis- 
location was induced to glide on all the low-index 
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planes of the zone, the slip systems [00 1](1 00) 
and [0 01 ] (01 0) apparently being most favoured 
in that order. Experimental evidence with which 
to compare this result is sparse, although chain- 
axis slip is known to be an important process in 
the deformation and drawing of polyethylene 
[6, 7]. Some experiments have indicated that the 
critical resolved shear stress (CRSS) is less on 
(1 00) than (0 1 0) and vice versa [6, 7], but, as 
discussed by Young [8], yield may be controlled 
by dislocation generation rather than the Peierls 
stress. The CRSS for (0 1 0) slip measured by 
Young at 300K corresponds to a critical shear 
strain of about 0.01, and from its strong tem- 
perature dependence could well rise at low 
temperatures to the value found here. The present 
study is, therefore, consistent with the exper- 
imental evidence at hand, but is unable to confirm 
the detail of Young's analysis. 

The only other theoretical investigation with 
which to compare the critical strains reported in 
Section 4.1 is that of Peterson [9], who also con- 
sidered a lattice of rigid, infinite chains, but with 
different, shorter-range potentials from those 
adopted here. He estimated the Peieds stress by 
imposing the dislocation displacements of linear 
elasticity on the lattice, and then calculated the 
change in lattice energy as the dislocation origin 
was moved along the slip plane. The stress for 
(1 00) and (01 0) slip was found for different 
values of the ratio C44/Css, for which the model 
used actually gave the high value of 8.4. Peterson's 
published curves do not extend to values in the 
more-reasonable range of 1 to 2, but if extrapola- 
tion is permitted, they give critical strains between 
0.001 and 0.01 for (1 00) slip and 0.01 and 0.04 
for (0 1 0) slip. These results again predict that 
(1 0 0) slip is favoured, and, bearing in mind the 
limitations of the model, are in reasonable agree- 
ment with the more realistic simulations of the 
present work. 

The computer simulations are unambiguous in 
predicting that if c-axis edge dislocations with b 
equal to [1 00] or [0 1 0] exist in polyethylene, 
they are not glissile and cannot contribute directly 
to transverse slip: slip on the~ (0 1 0) and (1 00) 
planes should only occur in the [0 0 1] direction. 
This was partly anticipated in Part 2 from the 
shape of the 3'-surface for these two planes, for the 
maximum value of I grad ~'t is orders of magnitude 
higher in the transverse directions than in [0 0 1 ]. 
It was not anticipated, however, that the b = 
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[1 00] edge would actually adopt a non-planar 
form and dissociate on the inclined {1 1 0 } planes. 
The results firmly indicate that transverse slip 
occurs only on the two (1 10) {1 1 0} systems, and 
it would be interesting to know whether the 
reports of (1 00) and (0 1 0) slip inferred from 
experiments [6, 7] actually arise from combi- 
nations of {1 1 0} slip. Transverse slip resulting 
from dissociated b = ( 1 1 0) dislocations should be 
very easy, for the maximum gradients on the 7- 
surface are small [1 ] and the partial spacing is wide 
(Section 3.1). Even if it results from the dissoci- 
ation of the [1 00] dislocation as in Section 4.2, 
the shear stress required to simply extend the  
stacking fault by the glide of the single Shockley 
partial should be small: i.e. taking 3' = 12.5 mJ m-2 
[1], the shear stress (= 23"/(a 2 + b2) I/2) is only 
approximately 0.01 of the transverse shear modulus 
on {1 1 0}. (The critical shear strain on the (1 TO) 
plane for glide of the partial D1 in Fig. 8b was 
actually 0.03, which reflects the relatively high 
value of the Peierls resistance at 0 K in the com- 
puter simulations.) It may be expected that 
Shockley partials on the {1 1 0} planes - either 
singly Or in pairs - will be responsible for trans- 
verse slip whatever the plane of maximum resolved 
shear stress. It is interesting to note in support of 
this that Holland [10] observed a large number of 
isolated, single, partial dislocations of this form 
in polyethylene crystals using Moird-fringe contrast 
in the transmission-electron microscope. 

Finally, the point made in Parts 1 and 2 that 
crystallite surfaces consisting of chain folds may 
play a significant part in affecting deformation 
mechanisms should be re-emphasized. The simu- 
lations reported here have deliberately concen- 
trated on the way structural effects within crystals 
affect dislocation properties. When more detailed 
information on surface folds is available, it might 
also be possible to incorporate them into computer 
models. 
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